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Abstract. The concepts of information transfer and causal effect have received much recent attention,
yet often the two are not appropriately distinguished and certain measures have been suggested to be
suitable for both. We discuss two existing measures, transfer entropy and information flow, which can be
used separately to quantify information transfer and causal information flow respectively. We apply these
measures to cellular automata on a local scale in space and time, in order to explicitly contrast them
and emphasize the differences between information transfer and causality. We also describe the manner in
which the measures are complementary, including the conditions under which they in fact converge. We
show that causal information flow is a primary tool to describe the causal structure of a system, while
information transfer can then be used to describe the emergent computation on that causal structure.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Kd Patterns – 89.70.Cf Entropy
and other measures of information

1 Introduction

Information transfer is currently a popular topic in com-
plex systems science, with recent investigations spanning
cellular automata [1], biological signaling networks [2,3],
and agent-based systems [4]. In general, information trans-
fer refers to a directional signal or communication of dy-
namic information from a source to a destination. How-
ever, the body of literature regarding quantification of in-
formation transfer appears to subsume two concepts: pre-
dictive or computational information transfer, and causal
effect or information flow. That correlation is not cau-
sation is well-understood. Yet while authors increasingly
consider the notions of information transfer and informa-
tion flow and how they fit with our understanding of corre-
lation and causality [5,6,7,8,9,10,11,12], several questions
nag. Is information transfer akin to causal effect? If not,
what is the distinction between them? When examining
the “effect” of one variable on another (e.g. between brain
regions), should one seek to measure information trans-
fer or causal effect? Despite the interest in this area, it
remains unclear how the notion of information transfer
should sit with the concepts of predictive transfer and
causal effect.

Predictive transfer refers to the amount of information
that a source variable adds to the next state of a desti-
nation variable; i.e. “if I know the state of the source,
how much does that help to predict the state of the des-
tination?”. This transferred information can be thought
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of as adding to the prediction of an observer, or as be-
ing transferred into the computation taking place at the
destination [13]; as such, we will also refer to this as the
computational perspective.

Causal effect refers to the extent to which the source
variable has a direct influence or drive on the next state
of a destination variable, i.e. “if I change the state of the
source, to what extent does that alter the state of the
destination?”. Information from causal effect can be seen
to flow through the system, like injecting dye into a river
[10]. In an Aristotelian sense, we restrict our interpretation
to efficient cause here (e.g. see [14]).

Unfortunately, these concepts have become somewhat
tangled in discussions of information transfer. Measures
for both predictive transfer [9] and causal effect [10] have
been inferred to capture information transfer in general,
and measures of predictive transfer have been used to infer
causality [15,16,11,17] with the two sometimes (problem-
atically) directly equated (e.g. [3,12,5,8,18,19]).

The notion of information transfer remains cloudy while
it is used interchangeably to refer to both concepts. Our
thesis in this paper is that the concepts of predictive trans-
fer and causal effect are quite distinct: we aim to clarify
them and describe the manner in which they should be
considered separately. We argue that the concept of pre-
dictive transfer (or the computational perspective) is more
closely aligned with the popularly understood notion of
information transfer, while causal information flow should
be considered separately as a useful notion in its own right.
Using the perspective of information theory (e.g. see [20]),
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we contend that these concepts are properly quantified by
the existing measures known as transfer entropy [9] and
information flow [10] respectively, and we use these mea-
sures to contrast the concepts.

For this comparison, we examine Cellular Automata
(CAs) (e.g. see [21]): discrete dynamical lattice systems
involving an array of cells which synchronously update
their states as a homogeneous deterministic function of
the states of their local neighbors. In particular we fo-
cus on Elementary CAs (ECAs), which consist of a one-
dimensional array of cells with binary states, with each
updated as a function of the previous states of themselves
and one neighbor either side (i.e. neighborhood size 3 or
range r = 1). These previous neighborhood states and the
recursive chain of their previous neighborhood states form
the past light-cone of a cell (i.e. the set of all points ca-
pable of having a causal effect on it) [22]. CAs provide
a well-known example of complex dynamics, since certain
rules (e.g. ECA rules 110 and 54 - see [21] regarding the
numbering scheme) exhibit emergent structures which are
not discernible from their microscopic update functions
but which provide the basis for understanding the macro-
scopic computations carried out in the CAs [23]. These
structures include particles, which are coherent structures
traveling against a background domain region. Regular
or periodic particles are known as gliders. Particles and
gliders are important here because they are popularly un-
derstood to embody information transfer in the intrinsic
computation in the CA [23].

In particular, we examine the transfer entropy and
information flow measures on a local scale in space and
time in ECAs, in order to provide an explicit compari-
son between the two. This is the first presentation and
examination of the local information flow. We demon-
strate that transfer entropy as predictive transfer is more
closely aligned with the notion of information transfer
(when measured on causal channels), since it alone is asso-
ciated with emergent coherent information transfer struc-
tures, i.e. particles in cellular automata. We also demon-
strate that causality stands separately as a useful concept
itself, with information flow identifying causal relations
in the domain region of the CA and demonstrating the
bounds of influence without being confused by correla-
tions. We describe the manner in which these results are
generalizable to other systems. Additionally, we describe
the conditions and parameter settings under which a vari-
ant of the transfer entropy converges with the information
flow.

On the basis of these results, we suggest that informa-
tion flow should be used first wherever possible in order to
establish the set of causal information contributors for a
given destination variable. Subsequently, the transfer en-
tropy measure may be used to quantify the concept of in-
formation transfer from these causal sources (only) to the
destination to study emergent computation in the system.

2 Predictive information transfer

2.1 Transfer entropy

The mutual information (e.g. see [20]) measures the av-
erage information in a variable Y about another variable
X:

I(Y ;X) =
∑
yn,xn

p(yn, xn) log2

p(yn, xn)

p(yn)p(xn)
. (1)

It was in the past used as a de facto measure of informa-
tion transfer. Schreiber presented transfer entropy [9] in
order to address deficiencies in the mutual information,
the use of which was criticized in the context of informa-
tion transfer as a symmetric measure of statically shared
information. Transfer entropy is defined as the deviation
from independence (in bits) of the state transition of an
information destination X from the previous state of an
information source Y 1:

TY→X(k) =
∑
wn

p(wn) log2

p(xn+1|x(k)
n , yn)

p(xn+1|x(k)
n )

. (2)

Here n is a time index, x
(k)
n refers to the k states of X

up to and including xn, and wn is the state transition

tuple (xn+1, x
(k)
n , yn). It can be viewed as a conditional

mutual information I(Y ;X ′|X(k)), casting it as the av-
erage information in the source yn about the next state
of the destination xn+1 that was not already contained

in the destination’s past k states x
(k)
n . To ensure that

no information in the destination’s past is mistaken as
transfer here, one should take the limit k → ∞ (writ-
ten TY→X) though in practice finite-k estimates must be
used [1]. This conditioning on the past makes the transfer
entropy a directional, dynamic measure of predictive infor-
mation, but it remains a measure of observed (conditional)
correlation rather than direct effect. In fact, the transfer
entropy is a nonlinear extension of a concept known as
the “Granger causality” [24], the nomenclature for which
may have added to the confusion associating information
transfer and causal effect.

We note the similar information current [25], which
measures changes in spatial information and does so on a
local scale in space and time also. This measure is inter-
pretable as an information contribution between the right
and left segments of a system only for those exhibiting de-
terministic mechanics. Furthermore, in considering spatial
information it is only defined for lattice systems, where it
either measures information contribution from the right
side of the system to the left (or vice-versa) but not from
an arbitrary source to an arbitrary destination. As such,
it remains out of scope for our comparison of information
transfer and causal information flow between a specific
source and destination in general multivariate systems.

1 The transfer entropy can consider transfer from l previ-

ous states of the source y
(l)
n , however here we consider systems

where only the previous state of the source is a causal contrib-
utor to the destination, so we use l = 1.
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2.2 Local transfer entropy

The transfer entropy is an average (or expectation value)
of a local transfer entropy [1] at each observation n, i.e.
TY→X(k) = 〈tY→X(n + 1, k)〉 where2:

tY→X(n + 1, k) = log2

p(xn+1|x(k)
n , yn)

p(xn+1|x(k)
n )

. (3)

This may also be expressed as a local conditional mutual

information: tY→X(n + 1, k) = i(yn;xn+1|x(k)
n ), and writ-

ten tY→X(n + 1) in the limit k →∞.
For lattice systems such as CAs with spatially-ordered

elements, the local transfer entropy to variable Xi from
Xi−j at time n + 1 is represented as:

t(i, j, n + 1, k) = log2

p(xi,n+1|x(k)
i,n , xi−j,n)

p(xi,n+1|x(k)
i,n)

. (4)

The transfer entropy t(i, j = 1, n+1, k) to variable Xi from
Xi−1 at time n+ 1 is illustrated in Fig. 1(a). t(i, j, n, k) is
defined for every spatiotemporal destination (i, n), for ev-
ery information channel or direction j. Sensible values for
j correspond to causal information sources, i.e. for CAs,
sources within the cell range |j| ≤ r (we will see in Sec-
tion 4.3 that the transfer entropy is interpretable as in-
formation transfer for these sources only). We write the
average for these lattice systems over i and n as T (j, k) =
〈t(i, j, n, k)〉.

The transfer entropy may also be conditioned on other
possible causal information sources, to eliminate their in-
fluence from being attributed to the source in question Y
[9]. In general, this means conditioning on all sources Z
in X’s set of causal information contributors V (except
for Y ) with joint state vyx,n at time step n. This gives the
local complete transfer entropy [1]:

tcY→X(n + 1, k) = log2

p(xn+1|x(k)
n , yn, v

y
x,n)

p(xn+1|x(k)
n , vyx,n)

, (5)

vyx,n = {zn|∀Z ∈ V,Z 6= Y, Z 6= X} . (6)

This too may be expressed as a local conditional mutual

information tcY→X(n + 1, k) = i(yn;xn+1|x(k)
n , vyx,n), and

we have T c
Y→X(k) = 〈tcY→X(n + 1, k)〉.

For CAs this means conditioning on other sources vji,r,n
within the range r of the destination to obtain [1]:

tc(i, j, n + 1, k) = log2

p
(
xi,n+1|x(k)

i,n , xi−j,n, v
j
i,r,n

)
p
(
xi,n+1|x(k)

i,n , v
j
i,r,n

) , (7)

vji,r,n = {xi+q,n|∀q : −r ≤ q ≤ +r, q 6= −j, 0} . (8)

Again, we write tc(i, j, n+ 1) in the limit k →∞ and can

express tc(i, j, n + 1, k) = i(xi,n+1;xi−j,n|x(k)
i,n , v

j
i,r,n).

2 See Appendix A for consideration of an alternative method
of localization of mutual information-based measures

In deterministic systems (e.g. CAs), conditioning on
all causal source renders tcY→X(n + 1, k) ≥ 0 because
the only possible observed value of xn+1 as determined

by
{
yn, x

(k)
n , vyx,n

}
has the numerator of the log term in

Eq. (5) as p
(
xn+1|x(k)

n , yn, v
y
x,n

)
= 1 and a denomina-

tor less than or equal to this. Calculations conditioned on
no other information contributors (as in Eq. (3)) are la-
beled as apparent transfer entropy, and these values may
be positive or negative (see discussion in [1]).

Finally, note that the information (or local entropy)
h(i, n + 1) = − log2 p(xi,n+1) required to predict the next
state of a destination at time step n+1 can be decomposed
as a sum of [13]:

– the information gained from the past of the destina-

tion (i.e. the mutual information between the past x
(k)
i,n

and next state xi,n+1, known as the active information

storage [13] a(i, n + 1, k) = i(x
(k)
i,n ;xi,n+1)); plus

– the information gained or transferred from each causal
source considered (in arbitrary order) in the context
of that past, incrementally conditioning each contri-
bution on the previously considered sources; plus

– any remaining intrinsic uncertainty in the destination
given its past and these sources.

For example, in ECAs we have no intrinsic uncertainty,
and the information required to predict the next state
of a cell is the sum of information gained from its past,
plus the extra information from one source that was not in
this past, plus the extra information from the other source
that was not in the cell’s past or in the first source. The
conditional mutual information terms here are equivalent
to the apparent transfer entropy from one neighbor plus
the complete transfer entropy from the other:

h(i, n + 1) = a(i, n + 1, k) + t(i, j = −1, n + 1, k) +

tc(i, j = 1, n + 1, k). (9)

Since the ordering of the sources is arbitrary, we also have:

h(i, n + 1) = a(i, n + 1, k) + t(i, j = 1, n + 1, k) +

tc(i, j = −1, n + 1, k). (10)

In this way, the different forms of the transfer entropy as
information transfer from causal sources can be seen to
characterize important components of the total informa-
tion at the destination. Importantly, note that no non-
causal information sources appear in the sum of informa-
tion transfer terms contributing to the total information
at the destination.

3 Causal effect

It is well-recognized that measurement of causal effect ne-
cessitates some type of perturbation or intervention of the
source so as to detect the effect of the intervention on the
destination (e.g. see [26,27]). Attempting to infer causal-
ity without doing so leaves one measuring correlations of
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(a) Apparent transfer entropy (b) Complete transfer entropy (c) Information flow

Fig. 1. Measures of local information transfer and causal information flow across one cell to the right in ECAs. (a) Apparent
transfer entropy t(i, j = 1, n+1, k): information contained in the source cell Xi−1 about the next state of the destination cell Xi

at time n + 1 that was not contained in the destination’s past. (b) Complete transfer entropy tc(i, j = 1, n + 1, k): information
contained in the source cell Xi−1 about the next state of the destination cell Xi at time n + 1 that was not contained in
either the destination’s past or the other information contributing cell Xi+1. As per Section 4.3, transfer entropy should only be
interpreted as information transfer when measured from within the past light-cone of xi,n. (c) Information flow f(i, j = 1, n+1):
the contribution of a causal effect from source cell Xi−1 to the next state of the destination cell Xi at time n + 1, imposing
the previous states of the destination cell and the other information contributing cell Xi+1; here the source a = xi−1,n, the
destination b = xi,n+1, the imposed contributors are s = {xi,n, xi+1,n} and the cells blocking a back-door path (see Section 3.1)
relative to (s, a) are u = {xi−1,n−1, xi,n−1, xi+1,n−1, xi+2,n−1}.

observations, regardless of how directional they may be
[10]. Here, we adopt the measure information flow for this
purpose, and describe how to apply it on a local scale.

3.1 Information flow

Following Pearl’s probabilistic formulation of causal Bayesian
networks [26], Ay and Polani [10] consider how to mea-
sure causal information flow via interventional conditional
probabilities. For instance, an interventional conditional
probability p(a|ŝ) considers the distribution of a resulting
from imposing the value of ŝ. Imposing means interven-
ing in the system to set the value of the imposed variable,
and is at the essence of the definition of causal information
flow. As an illustration of the difference between interven-
tional and standard conditional probabilities, consider two
correlated variables s and a: their correlation alters p(a|s)
in general from p(a). If both variables are solely caused by
another variable g however, even where they remain cor-
related we have p(a|ŝ) = p(a) because imposing a value ŝ
has no effect on the value of a.

In a similar fashion to the definition of transfer entropy
as the deviation of a destination from stochastic indepen-
dence on the source in the content of the destination’s
past, Ay and Polani propose the measure information flow
as the deviation of the destination B from causal indepen-
dence on the source A imposing another set of nodes S.
Mathematically, this is written as:

Ip(A→ B|Ŝ) =
∑
s

p(s)
∑
a

p(a|ŝ)
∑
b

p(b|â, ŝ)

log2

p(b|â, ŝ)∑
a′ p(a′|ŝ)p(b|â′, ŝ)

. (11)

The value of the measure is dependent on the choice
of the set of nodes S. It is possible to obtain a measure of
apparent causal information flow Ip(A→ B) from A to B
without any S (i.e. S = �), yet this can be misleading. For
example, it ignores causal information flow arising from in-
teractions of the source with another source variable (e.g.
if b = a XOR s and p(a, s) = 0.25 for each combination
of binary a and s, then Ip(A → B) = 0 despite the clear

causal effect of A, while Ip(A → B|Ŝ) = 1 bit). Also, we
may have Ip(A→ B) > 0 only because A effects S which
in turn effects B; where we are interested in direct causal
information flow from A to B only Ip(A → B|Ŝ) validly
infers no direct causal effect.

In this paper we are interested in measuring the di-
rect causal information flow from A to B, so we must
either include all possible other sources in S or at least
include enough sources to “block”3 all non-immediate di-
rected paths from A to B [10]. The minimum to satisfy
this is the set of all direct causal sources of B excluding
A, including any past states of B that are direct causal
sources:

syx,n =
{
xn, v

y
x,n

}
. (12)

For computing direct information flow across one cell to
the right in ECAs (see Fig. 1(c)) where a = xi−1,n and
b = xi,n+1, this means S includes the immediate past of
the destination cell and the previous state of the cell on its
right: {xi,n, xi+1,n}. Generalized as Ip(j) for information

3 A set of nodes U blocks a path of causal links where there
is a node v on the path such that either: i. v ∈ U and the
causal links through v on the path are not both into v, or ii.
the causal links through v on the path are both into v and v
and all its causal descendants are not in U .
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flow across j cells to the right in any 1D CA, we have:

sji,r,n =
{
xi,n, v

j
i,r,n

}
. (13)

The major task in computing Ip(A → B|Ŝ) is the de-
termination of the underlying interventional conditional
probabilities in Eq. (11). By definition these may be gleaned
by observing the results of intervening in the system, how-
ever this is not possible in many cases.

One alternative is to use detailed knowledge of the dy-
namics, in particular the structure of the causal links and
possibly the underlying rules of the causal interactions.
This also is often not available in many cases, and indeed is
often the very goal for which one turned to such analysis in
the first place. Regardless, where such knowledge is avail-
able it may allow one to make direct inferences. An impor-
tant example is where the observed variable is known to be
completely determined by the imposing set (e.g. p(b|â, ŝ)
in ECAs in Fig. 1(c) can be determined as 0 or 1 from the
CA rule table). Indeed, with S selected to compute direct
information flow, B is determined from A and S (save
for any underlying stochasticity), and one can use obser-
vational probabilities alone for p(b|â, ŝ) = p(b|a, s) when
all {a, s} combinations are observed. Another example is
where the observed variable remains unaffected by the im-
position (e.g. p(a|ŝ) becomes p(a) in ECAs in Fig. 1(c))
allowing one to use the observational probabilities alone
independently of the imposed variable.

Furthermore, certain other cases exist where one can
construct these values from observational probabilities only
[10]. For example, the “back-door adjustment” (Section
3.3.1 of [26])4 is an option where a set of nodes U satisfies
the “back-door criteria” relative to (X,Y ), i.e. that:

1. no node in U is a causal descendant of X, and
2. U blocks every “back-door path” between X and Y .

A back-door path between X and Y is a path of causal
links connecting these nodes, where the individual links
in the path may point in either direction, so long as
the path includes a causal link directly into X. (See
footnote 3 for the definition of blocking a path.)

In that case, the interventional conditional probability
p(y|x̂) is given by:

p(y|x̂) =
∑
u

p(y|x, u)p(u). (14)

The back-door adjustment could be applied to p(a|ŝ) in
ECAs in Fig. 1(c) with the set of nodes satisfying the
back-door criteria marked there as u; for p(b|â, ŝ) the set
u2 = {u, xi−2,n−1} would be used. In general, note that
the back-door adjustment can only be applied if all rel-
evant combinations are observed (i.e. for {y, x, u} where
p(y, x, u) is strictly positive [10]).

4 The back-door adjustment is a sub-case of the “adjustment
for direct causes” [10] which is numerically simpler when the
set of back-door nodes U is known.

3.2 Local information flow

We can define a local information flow :

f(a→ b|ŝ) = log2

p(b|â, ŝ)∑
a′ p(a′|ŝ)p(b|â′, ŝ)

, (15)

in a similar manner to the localization performed for the
transfer entropy. The meaning of the local information
flow is slightly different however. Certainly, it is an at-
tribution of local causal effect of a on b were ŝ imposed
at the given observation (a, b, s). However, one must be

aware that Ip(A → B|Ŝ) is not the average of the local
values f(a → b|ŝ). Unlike the transfer entropy, the infor-
mation flow is averaged over a product of interventional
conditional probabilities (p(s)p(a|ŝ)p(b|â, ŝ), see Eq. (11))
which in general does not reduce down to the probability
of the given observation p(s, a, b) = p(s)p(a|s)p(b|a, s). For
instance, it is possible that not all of the tuples {a, b, s}
will actually be observed, so averaging over observations
would ignore the important contribution that any unob-
served tuples provide to the determination of information
flow. Again, the local information flow is specifically tied
not to the given observation at time step n but to the gen-
eral configuration (a, b, s), and thereby attributed to the
observation of this configuration at time n.

For lattice systems such as CAs, we use the notation
f(i, j, n+1) to denote the local information flow into vari-
able Xi from the source Xi−j at time step n+ 1 (i.e. flow
across j cells to the right), giving:

f(i, j, n + 1) = log2

p(xi,n+1| ̂xi−j,n, ŝ
j
i,r,n)

d(i, j, n + 1)
, (16)

d(i, j, n + 1) =
∑

x′i−j,n

p(x′i−j,n|ŝ
j
i,r,n)

× p(xi,n+1| ̂xi−j,n
′
, ŝji,r,n), (17)

with sji,r,n defined in Eq. (13).

4 Application to Cellular Automata

Here, we measure the local transfer entropy and local in-
formation flow to the raw states of ECA rule 54 in Fig. 2.
This rule exhibits a (spatially and temporally) periodic
background domain, with gliders traveling across the do-
main and colliding with one another, forming the basis of
an emergent intrinsic computation. We compute the re-
quired probabilities from running a 10 000 cell CA for 600
time steps.

Focusing on transfer and flow one step to the right per
unit time step, we measure the average transfer values be-
ing T (j = 1, k = 16) = 0.080 and T c(j = 1, k = 16) =
0.193 bits for apparent and complete transfer entropy re-
spectively, and the information flow at Ip(j = 1) = 0.523
bits. Much more insight is provided by examining the local
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values of each measure however, and we describe four cases
within these results to highlight the differences in the mea-
sures and indeed in the concepts of information transfer
and causal effect in general. These differences have been
observed for transfer and flow one step to the left per unit
time step (i.e. j = −1) also, and in other CAs with emer-
gent structure (e.g. rules 110 and 18), and we comment
on the generality of these results to other systems.

For the information flow, p(b|â, ŝ) is measured using
observations only as per the back-door adjustment de-
scribed in Section 3.1 (unless otherwise stated), to mini-
mize reliance on knowledge of the underlying dynamics.

4.1 Coupled periodic processes may be highly causal

As an extension of the example of coupled Markov chains
in [10] to more complex dynamics, we first look at the
background domain region of the CA where each cell ex-
ecutes a periodic sequence of states. The four time step
period of the (longest) sequences is longer than any one
binary-state cell could produce alone – the cells rely on
interaction with their neighbors to produce these long se-
quences. We see that the local transfer entropies t(i, j =
1, n, k = 16) and tc(i, j = 1, n, k = 16) vanish here in
Fig. 2(d) and Fig. 2(e) [1], while the local information flow
f(i, j = 1, n) in Fig. 2(b) measures a periodic pattern of
causal effect at similar levels to those in the glider/blinker
regions.

Both results are correct, but from different perspectives.
From a computational perspective, the cells in the do-
main region are executing information storage processes
– their futures are (almost) completely predictable from

their periodic pasts alone [1] (i.e. p(xi,n+1|x(k)
i,n , xi−j,n)→

p(xi,n+1|x(k)
i,n)) so there is vanishing information transfer

here (and t(i, j = 1, n, k = 16) → 0). This is clearly
the case for any periodic process at the destination. Note
that to achieve the long periods here, some information is
stored in neighbors and retrieved after a few time steps
[13] (achieving a stigmergic information storage, similar
to [28]). Indeed, the long periodic sequences in the back-
ground domain (longer than any one cell could produce
alone) are necessarily underpinned by the coupled causal
effect between the neighbors. From another perspective,
much of the background domain is highly causal simply
because had one imposed values on the sources there the
destinations would have changed; hence we find the strong
patterns of information flow here.

The key general result here is that the measure trans-
fer entropy does not detect all causal effects that informa-
tion flow does. This is because the concept of information
transfer is focused on computation and is not intended to
capture causal effect where that causal effect underpins
information storage instead.

4.2 Gliders distinguished as emergent information
transfer

We then examine the measurements at the gliders, the
emergent structures which propagate against the back-
ground domain. Here we see that the local transfer en-
tropies t(i, j = 1, n, k = 16) and tc(i, j = 1, n, k = 16)
measure strong predictive information in the direction of
glider motion in Fig. 2(d) and Fig. 2(e) [1], while the local
information flow f(i, j = 1, n) measurement in Fig. 2(b)
varies little between the gliders and the background do-
main.

Again, both results are correct from different perspec-
tives. The cell states in the glider region provide much
stronger predictive information about the next states in
the direction of glider motion than do the previous states

of the destination cells (i.e. p(xi,n+1|x(k)
i,n , xi−j,n) > p(xi,n+1|x(k)

i,n)).
This is why gliders have long been said to transfer informa-
tion about the dynamics in one part of the CA to another
(as quantified by the local transfer entropy [1]). Indeed in
Eq. (9) we see these as information transfer terms com-
bining with information storage in computing the next
state of the cell. For these reasons, we say that predic-
tive transfer is the concept that more closely aligned with
the popularly understood concept of information transfer.
From a causal perspective, the same CA rules or templates
{a, s} executed in the glider are also executed elsewhere in
the domain of the CA – while imposing the source value
does indeed have a causal effect on the destination in the
gliders, the positive directional information flow here is no
greater than levels observed in the domain. The measure
certainly captures the causal mechanism in the gliders, but
its localization does not distinguish that from the flow in
the domain.

The key general result then is that information flow
does not distinguish emergent computational structure (i.e.
gliders) that transfer entropy does. It is possible that a
macroscopic formulation of the information flow might dis-
tinguish gliders as highly causal macroscopic structures,
but certainly (when applied to the same source and des-
tination pair as transfer entropy) as a directional mea-
sure of direct local causal effect it does not distinguish
these emergent structures. In this form, the causal per-
spective focuses on the details or micro-level of the dy-
namics, whereas the predictive or computational perspec-
tive takes a macroscopic view of emergent structures. It is
the examination in the context of the past k states that
affords this macroscopic view to the transfer entropy, and
emergent structure can only be detected on this scale.
Since gliders are dislocations in background patterns [29]
which can only be caused by neighboring cells, the source
of the glider will add information about the destination
in the context of this pattern in the past k states (i.e.

p(xi,n+1|x(k)
i,n , xi−j,n) > p(xi,n+1|x(k)

i,n)) and we have strong
information transfer. On the other hand, information flow
intrinsically cannot consider the context of the past, since
imposing on xi−j,n and sji,r,n blocks out the influence of
those past k states.
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(a) Raw CA (b) f(i, j = 1, n) (c) tc(i, j = 1, n, k = 1)

(d) tc(i, j = 1, n, k = 16) (e) t(i, j = 1, n, k = 16) (f) t(i, j = 2, n, k = 16)

Fig. 2. Local transfer entropy and information flow for raw states of rule 54 in (a) (45 time steps displayed for 45 cells, time
increases down the page): (b) Local information flow across one cell to the right, (all figures gray-scale with 16 levels) with max.
1.07 bits (black); Local complete transfer entropy across one cell to the right: (c) with past history length k = 1 (max. 1.17 bits
(black)), and (d) past history length k = 16 (max. 9.22 bits (black)); Local apparent transfer entropy, positive values only: (e)
across one cell to the right (max. 7.93 bits (black)), and (f) across two cells to the right (max. 6.00 bits (black)).

Finally, we note that the highlighting of the gliders by
the local transfer entropy is a form of filtering for emer-
gent structure in CAs [1]. It is not the only method of
such filtering (see also: finite-state transducers which rec-
ognize the regular spatial language of the CA [29,30]; local
statistical complexity and local sensitivity [22]; displays of
neighborhood rule templates with the most frequently oc-
curring rules filtered out [31]; and local information, i.e.
local spatial entropy rate [32]). However, it is the only
method to do so with an explicit measure of information
transfer and to provide direct quantitative evidence that
gliders are information transfer agents.

4.3 Information transfer to be measured from causal
sources only

Fig. 2(f) measures the local apparent transfer entropy
t(i, j = 2, n, k = 16) for two steps to the right per unit

time step. This profile is fairly similar to that produced for
one step to the right per unit time step (Fig. 2(e)). How-
ever, this measurement suggests a superluminal transfer,
i.e. transfer from outside of the past light-cone of xi,n.
The result is not intuitive as we expect zero information
transfer from sources that are not direct causal informa-
tion contributors. This is because only causal sources are
present in Eq. (9) in contributing or transferring informa-
tion to the next state of the destination. What we see in
this profile merely reflects a correlation between the pur-
ported source and an actual causal source one cell away
from the destination: the transfer entropy will produce
a non-zero result from non-causal sources whenever such
correlations exist. This does not mean that the transfer
entropy measure is wrong, merely that it has not been cor-
rectly interpreted here. The key general result is that in
order to be genuinely interpreted as information transfer,
the transfer entropy should only be applied to causal in-
formation sources for the given destination. Beyond these
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sources, it only measures correlations that do not directly
contribute or transfer information into the computation
that determines the next state of the destination.

To check the correctness of the information flow mea-
sure, we apply it here assuming the CA is of neighborhood-
5 (i.e. two causal contributors on either side of the des-
tination with r = 2). As expected, the local information
flow profile computes no causal effect across two cells to
the right per unit time step (not shown). Importantly how-
ever, note that the information flow could not be measured
using observational data alone for either j = 1 or j = 2
in neighborhood-5 (since the CA does not produce all of
the required {s, a} combinations for computing p(b|â, ŝ));
specific knowledge about the dynamics was required for
the calculation.

Furthermore, measuring the complete transfer entropy
tc(i, j = 2, n, k = 16) in this neighborhood results in a zero
predictive information profile (not shown). This is because
all the information h(i, n+ 1) required to predict the next
state of the destination is contained within the interior r =
1 neighborhood for this deterministic system. This infor-
mation is represented in the right-hand side of Eq. (9), and
is a subset of the conditioned variables in the expansion

of tc(i, j = 2, n, k = 16) as i(xi,n+1;xi−2,n|x(k)
i,n , v

j=2
i,r=2,n).

This measurement aligns well with the zero result for in-
formation flow. Significantly, only the complete transfer
entropy is able to make its inference using the available
observational data alone, though both measures require
the correct neighborhood of other causal contributors to
be a subset of those conditioned on or imposed here.

4.4 Complete transfer entropy as an inferrer for
information flow

The parallels between the complete transfer entropy and
the information flow go beyond similar inference of a lack
of influence. Consider the profile of tc(i, j = 1, n, k = 1) in
Fig. 2(c) – note how similar it is to the profile of the local
information flow in Fig. 2(b). Note also that the average
value T c(j = 1, k = 1) = 0.521 bits is almost identical to
the information flow Ip(j = 1) = 0.523 bits.

Convergence of the complete transfer entropy and di-
rect information flow occurs with the combination of one
parameter setting and two conditions which are approxi-
mated in this example:

1. the parameter k for the complete transfer entropy was
set to include only the past states of the destination
that are causal information contributors to its next
state;

2. the condition that all {a, s} combinations are observed
(this condition is relevant for averages but not local
values);

3. the condition that p(a|ŝ) ≡ p(a|s) (which for exam-
ple is met where a is both causally and conditionally
independent of s).

We describe why these conditions lead to convergence in
the following paragraphs.

With history length k = 1 here the numerators of
the local measures Eq. (5) and Eq. (15) in fact become
equal. This is enabled because with the history length k
set to include only the past states of the destination that
are causal information contributors to its next state5 –
no more, no less – the complete transfer entropy condi-
tions on the same variables that the direct information
flow imposes upon. That is, as shown in Eq. (12) syx,n

for Eq. (15) refers to the same variables as
{
x
(k)
n , vyx,n

}
in Eq. (5) with k set in this manner. Building on this
enabling then, since we are measuring direct information
flow we have p(b|â, ŝ) = p(b|a, s) when the {a, s} combina-
tion is observed (as stated in Section 3.1). This parameter
setting then ensures the numerators of the local measures
Eq. (5) and Eq. (15) are the same.

Note that for the combinations of {a, s} which are not
observed p(b|a, s) is technically undefined; this is not rel-
evant for local values of either measure (since the given
{a, s} must have been observed), or the average complete
transfer entropy, but for the information flow these terms
revert to p(b|â, ŝ) and contribute additionally to Ip. For

convergence of the averages T c
Y→X(k) and Ip(A → B|Ŝ)

only, it is thus required that all {a, s} combinations are
observed. The condition is met in this example.

Consider now that if the condition p(a|ŝ) ≡ p(a|s) is
also met, then the denominator of Eq. (15) becomes p(b|s).
With s referring to the same variables as

{
x
(k)
n , vyx,n

}
, the

denominator of Eq. (15) then matches Eq. (5), and in
conjunction with the above conditions we have equality
between the two local values and their averages. Impor-
tantly, this condition does not require all values of s to
be observed for convergence of the averages, since p(s)
in Eq. (11) eliminates the contribution of any unobserved
values of s.

This final condition is approximated but not quite ex-
actly met in the CA example. As described in Section 3.1,
we have p(a|ŝ) ≡ p(a) for the information flow here. We
note that this final condition would still be met if in fact
p(a) = p(a|s) (i.e. p(yn|x(k)

n , vyx,n) = p(yn) in the notation
for Eq. (5)). That is, there is a class of systems which
satisfy this condition because the source is both causally
and conditionally independent of the other causal contrib-
utors to the destination. The CA example approximates
the sub-condition p(a|s) = p(a). In Fig. 1 we see that while
both a = xi−1,n and s = {xi,n, xi+1,n} have two common
sources ({xi−1,n−1, xi−1,n}), a has one extra and s has
two extra sources that are not shared. It is these unshared
sources that cannibalize the correlation between s and a.
The small correlation here is confirmed by the Kullback-
Leibler divergence (see [20]) of p(a|s) from p(a) (i.e. the
mutual information between a and s) which is very low
(0.01 bits) for j = {1,−1} for rule 54 here. The divergence
is still low, but larger for other ECA rules with emergent

5 That is, with k = 1 in the CAs here, though for example in
[11] where the elements in Henon maps are causally effected by
their previous two states, k = 2 would be appropriate rather
than the use of k = 1 there.
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structure (i.e. 0.03 bits for rule 110 and 0.13 bits for rule
18). Nonetheless, the non-zero divergence confirms that
the condition is not precisely met. Finally we note that
where the previous conditions (including p(a|ŝ) ≡ p(a))
were met, the difference between the local values due to
p(a|s) 6= p(a) may be written as:

log2

∑
a′ p(a′)p(b|a′, s)

p(b|s)
, (18)

or for the CA as:

log2

∑
x′i−j,n

p(x′i−j,n)p(xi,n+1|x′i−j,n, s
j
i,r,n)

p(xi,n+1|sji,r,n)
. (19)

Interestingly this difference is independent of the source
value, a = xi−j,n.

Where one cannot intervene in the system, and does
not have the required observations to use a method such
as the back-door adjustment, the local complete transfer
entropy could provide a useful inference for the local in-
formation flow profile. Within one’s control is to set the
history length k to include only the past states of the
destination that are causal information contributors to its
next state. The history length parameter k therefore has
an important role in moving the (complete) transfer en-
tropy between measuring information transfer (at large k)
and approximating causal effect (at minimal k). Outside
of one’s control is whether the other conditions are met;
errors begin to be introduced where they are not. We note
that there is a wide class of systems where the source a is
causally independent of the other causal contributors to
the destination s (i.e. p(a|ŝ) ≡ p(a)), and though error-
prone a subsequent assumption of conditional indepen-
dence (i.e. p(a|s) = p(a)) is a maximum entropy assump-
tion.

Importantly, the complete transfer entropy must con-
dition on the correct neighborhood of causal sources. This
knowledge is missing in the important application where
one is inferring causal structure in a multi-variate time se-
ries. It is possible that the transfer entropy itself could be
used to iteratively build an inference of the causal con-
tributors for a given destination by incrementally con-
ditioning on previously inferred sources (reminiscent of
Eq. (9)). This would be done by incrementally identify-
ing the next source which provides the most statistically
significant transfer entropy conditioned on the previously
identified sources, until all (deterministic) information in
the destination is accounted for. Such a method combines
the multi-variate source selection of [3] with the complete
transfer entropy and the statistical significance tests of
[17]. Testing this method is left for future work.

Finally, we note that while the complete transfer en-
tropy can at least function in the absence of observations
spanning all possible combinations of the variables, if cru-
cial combinations are not observed it can give quite incor-
rect inferences here. For example, consider the classical
causal example of a short circuit which causes a fire in
the presence of certain conditions (e.g. with inflammable
material), while the fire can also be started in other ways

(e.g. overturning a lighted oil stove) [33]. If one never ob-
serves the short circuit in the right conditions, without the
other fire triggers, the transfer entropy is in fact unable
to infer a causal link from the short circuit to the fire.

5 Discussion and Conclusion

The concepts of information transfer and causal effect
have often been confused. In this paper, we have demon-
strated the complementary nature of these concepts while
emphasizing the distinctions between them. On an information-
theoretical basis, information flow quantifies causal ef-
fect using an interventionist perspective, while transfer
entropy quantifies information transfer by measuring a
(conditional) correlation on a causal channel. We have ex-
plored the subtle yet distinct differences between these
concepts using a local scale within cellular automata.

Causal effect is a fundamental micro-level property of a
system. Information flow should be used as a primary tool
(where possible) to establish the presence of and quan-
tify causal relationships. There are situations where this
is not possible (e.g. where one has no ability to intervene
in the system, no knowledge of the underlying dynamics,
and cannot apply a method such as the back-door adjust-
ment to observational data). Then, under certain param-
eter settings (i.e. with history length k set to include only
the causal contributors from the destination’s past) and
conditions the complete transfer entropy converges with
the information flow, and may still provide a reasonable
inference where these conditions are approximated. The
apparent transfer entropy is not applicable here since it
cannot discern correlation from causal effect, and neither
apparent nor complete transfer entropy with large k is
suitable since these measure predictive information trans-
fer rather than direct causal effect. Note that for both the
information flow or complete transfer entropy, it is crucial
that they be applied imposing or conditioning the correct
set of other causal variables – the task of building knowl-
edge of this correct set is left for investigation in future
work.

Information transfer can then be analyzed in order to
gain insight into the emergent computation being carried
out by the system, e.g. via gliders in CAs. Importantly,
the transfer entropy should only be measured for causal
information contributors to the destination, otherwise its
result cannot be interpreted as information transfer. To
do so, both the apparent and complete transfer entropy
should be used, with history length k set as large as pos-
sible. These are complementary measures which allow one
to assess the composition of information storage, transfer
and interactions in a system [13]. Information flow is not
suitable for the analysis of emergent computation, since in
representing causal effect it takes too microscopic a view-
point, and provides no method for describing the compo-
sition of information in the computation.

The authors thank Daniel Polani and Nihat Ay for helpful dis-
cussions regarding the nature of the information flow measure
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and in particular how to estimate it from observational data.
JL thanks John Mahoney for discussions regarding measuring
transfer entropy from non-causal sources, and the Australian
Research Council Complex Open Systems Research Network
(COSNet) for a travel grant that partially supported this work.

A Consideration of alternative method of
localization

An alternative method of localizing mutual information-
based measures was proposed in [34]. The authors con-
sider partial localizations, computing how much informa-
tion I(yn;X) a specific value yn gives about what value
X might take. It is required that a partial localization
I(yn;X) averages over yn to the average mutual informa-
tion I(Y ;X):

I(Y ;X) =
∑
yn

p(yn)I(yn;X). (20)

As well as the conventional expression that satisfies this
requirement:

I1(yn;X) =
∑
xn

p(xn|yn) log2

p(xn|yn)

p(xn)
, (21)

the authors present an alternative partial local mutual in-
formation as the reduction in uncertainty of X on knowing
yn:

I2(yn;X) = HX −HX|yn
, (22)

giving:

I2(yn;X) = −
∑
xn

p(xn) log2 p(xn) +∑
xn

p(xn|yn) log2 p(xn|yn). (23)

While both I1 and I2 satisfy the constraint Eq. (20), they
do give different values for I(yn;X). Importantly, I1 is
non-negative, but I2 is unique in satisfying the key prop-
erty of additivity of information from multiple sources:

I({yn, zn} ;X) = I(yn;X) + I(zn;X | yn). (24)

In this paper we consider full localizations, computing
how much information i(yn;xn) a value yn gives about
the specific value xn that X actually takes at time step
n. Similar to requirement Eq. (20), the full localizations
i(yn;xn) are required to satisfy:

I(Y ;X) =
∑
yn

p(yn)
∑
xn

p(xn|yn)i(yn;xn). (25)

The approach to these local values used in the main body
of our text:

i1(yn;xn) = log2

p(xn|yn)

p(xn)
, (26)

is analogous to I1(yn;X) because it also satisfies:

I(yn;X) =
∑
xn

p(xn|yn)i(yn;xn), (27)

for I1(yn;X). Interestingly, for i1(yn;xn) we also have:

i1(yn;xn) = h(xn)− h(xn|yn), (28)

in analogy to I2(yn;X) in Eq. (22), which leads i1 to sat-
isfy the crucial property of additivity [34]:

i({yn, zn} ;xn) = i(yn;xn) + i(zn;xn | yn), (29)

unlike I1(yn;X) (with Eq. (24)).
It is worth considering whether the approach of [34] in

proposing I2(yn;X) may be extended to propose a valid
i2(yn;xn) which satisfies Eq. (25) by satisfying Eq. (27)
for I2(yn;X). Certainly an extension of Eq. (23) provides:

i2(yn;xn) = −p(xn)p(yn)

p(xn, yn)
log2 p(xn) + log2 p(xn|yn),

(30)
for this purpose. However, this expression does not satisfy
the additivity property of Eq. (29).

Importantly also, expressions for i(yn;xn) have an ad-
ditional requirement for correctness: they must be sym-
metric in xn and yn in analogy to the averaged value
I(X;Y ) because the information contained in yn about
the specific value xn is the same as the information con-
tained in xn about the specific value of yn. This is not
applicable to partial localizations I(yn;X) because they
are asymmetrically defined in considering the known value
of one variable and the unknown value of the other. The
extension of I2(yn;X) to i2(yn;xn) fails this symmetry
requirement in general (easily verified with sample val-
ues, e.g. p(xn) = 0.1, p(yn) = 0.18, p(xn|yn) = 0.5,
p(yn|xn) = 0.9, p(xn, yn) = 0.09), and so is not a cor-
rect form to locally quantify the mutual information.

As such, we are left with i1(yn;xn) for full localizations
i(yn;xn) since it satisfies both additivity and symmetry.

When selecting a measure for partial localizations, one
should carefully consider which properties are required.
Selecting I2(yn;X) preserves additivity, while I1(yn;X)
preserves positivity and averaging over the correct full lo-
calization i1(yn;xn).

References

1. J.T. Lizier, M. Prokopenko, A.Y. Zomaya, Phys. Rev. E
77(2), 026110 (2008)

2. J. Pahle, A.K. Green, C.J. Dixon, U. Kummer, BMC
Bioinformatics 9, 139 (2008)

3. T.Q. Tung, T. Ryu, K.H. Lee, D. Lee, Inferring Gene
Regulatory Networks from Microarray Time Series Data
Using Transfer Entropy, in Proceedings of the Twentieth
IEEE International Symposium on Computer-Based Med-
ical Systems (CBMS ’07), Maribor, Slovenia, edited by
P. Kokol, V. Podgorelec, D. Mičetič-Turk, M. Zorman,
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