Analysing the ‘Biodiversity’ of Open Source Ecosystems:
The GitHub Case

Nicholas Matragkas, James R. Williams, Dimitris S. Kolovos, and Richard F. Paige
. Department of Computer Science, University of York, UK
{nicholas.matragkas;james.r.williams;dimitris.kolovos;richard.paige}@york.ac.uk

ABSTRACT

In nature the diversity of species and genes in ecological
communities affects the functioning of these communities.
Biologists have found out that more diverse communities
appear to be more productive than less diverse communi-
ties. Moreover such communities appear to be more stable
in the face of perturbations. In this paper, we draw the
analogy between ecological communities and Open Source
Software (OSS) ecosystems, and we investigate the diversity
and structure of OSS communities. To address this question
we use the MSR 2014 challenge dataset, which includes data
from the top-10 software projects for the top programming
languages on GitHub. Our findings show that OSS commu-
nities on GitHub consist of 3 types of users (core developers,
active users, passive users). Moreover, we show that the per-
centage of core developers and active users does not change
as the project grows and that the majority of members of
large projects are passive users.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering|: Metrics—complezity mea-
sures, performance measures

General Terms

Measurement

Keywords

Data mining; Data and knowledge visualization

INTRODUCTION

Biodiversity is defined as the “totality of genes and species”
of an ecosystem [4] and it is considered a primary factor of
an ecosystem’s stability and productivity. Similar to an eco-
logical ecosystem, research suggests that member diversity
of Open Source Project (OSS) communities is an indica-
tion of a project’s health and longevity. More particularly,

1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

MSR’14, May 31 — June 1, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2863-0/14/05...$15.00
http://dx.doi.org/10.1145/2597073.2597119

356

[2] performed a diversity-related analysis of the users of 337
open source projects hosted on SourceForge! and they found
out that diversity in project roles and experience positively
affects project success, which is measured by user participa-
tion.

Following [1], a community around an OSS product is not
a uniform collection of individuals, but it is rather a collec-
tion of heterogeneous actors with different goals and moti-
vations. More particularly, an OSS project community has
an onion-shaped structure. At the core of this structure are
the founders of the project and the project’s leaders, who
take important decisions. The next layer of the structure
consists of the core developers of the project, who have high
commit privileges on the source code repository. Surround-
ing the core developers are the co-developers, who do not
have commit rights to the source code repository. These
developers usually submit patches, which are reviewed by
the core developers and then they are applied to the code
base. The next layer of the onion-shaped structure com-
prises the active users of the project. Active users report
new bugs, write documentation and answer questions of user
newsgroups. Finally, at the rim of the structure are the pas-
sive users of the OSS product. It is the existence of all these
roles and their interactions that leads to the success of a
project.

In this paper, we investigate whether the GitHub? OSS
community demonstrates high diversity of user roles and
whether there is an emergent structure as a result of the
various user activities. More particularly our research ques-
tions are the following:

- RQ1: Do GitHub communities exhibit diversity and
structure? If so, how does this structure look like?

- RQ2: Is the structure of GitHub communities similar
to the structure of other open source software commu-
nities hosted in other forges?

- RQ3: Does the size of a community affect its struc-
ture?

2. METHODOLOGY

To address the above research questions, we used the GHTor-
rent MongoDB dataset provided by the MSR challenge [3].
The dataset contains data related to 90 popular GitHub
projects and their forks. These projects (totalling 108,710)

"http://sourceforge.net
’https://github.com/

[Biodiversity |
I J
k.2 *
ProjectMembership * Project
projectName : String [User | name : Strin
projectOwner : String [login : String J ownerNameg' String
userName : String .
! |
Measurable
commits : Int
commitComments : Int
issues : Int

issueComments : Int
pullRequests : Int
pullRequestComments : Int

Figure 1: The data model of the transformed data.

are stored in a MongoDB collection. Each commit, commit
comment, issue, issue comment, pull request, and pull re-
quest comment related to these projects are grouped into
MongoDB collections of the same kind. Details of nearly
500,000 users associated with these projects are also stored
in their own collection. The dataset also includes data re-
lated to project members and user followers.

In order to analyse user behaviour so as to determine each
user’s role in a project, we need to collate all information re-
lated to that user. Due to the fact that this information is
contained in separate MongoDB collections, querying can be
challenging. To address this we have implemented a prepro-
cessing script to convert the data into a state better suited
to the kind of analysis we wish to perform. We now present
the data model of the transformed data, briefly overview the
transformation, and describe our analysis methods.

2.1 Transforming the Data for Analysis

To transform the data from the disjointed form into an
integrated arrangement that captures the activity of users,
we need to read and summarise every activity-related entry
in the GHTorrent dataset. Rather than interacting directly
with the database at a low level of abstraction (using one of
MongoDB’s many drivers), we utilise Pongo®, a Java-based
object-document mapper for MongoDB. From the textual
definition of a data model, Pongo generates strongly-type
Java classes, allowing users to work with the database at
a more convenient level of abstraction. Figure 1 shows the
data model, represented as a class diagram, that we have de-
fined using Pongo to collate the data needed for our analysis.
We define three measurable types: users, projects, and the
contribution a single user makes on a single project. Each of
these stores counts related to user activity. The User class
stores the total activity a user has over every project they
participate in. The Project class stores the total activity of
all users on that project. Finally, the ProjectMembership
class stores an individual’s contribution to a single project.
Each of the measurable types has its own MongoDB collec-
tion for storage, and they are contained in a single MongoDB
database (represented by the Biodiversity class in figure
1). From this data model definition, Pongo generates the
equivalent Java code. An example of using the generated
code to interact with the database is shown in listing 1.

3https://code.google.com/p/pongo

357

The transformation process involves iterating through
a number of the GHTorrent dataset collections and creat-
ing or updating entries in the biodiversity database. Ini-
tially, we create a User for every entry in the GHTorrent
‘users’ collection, and a Project for every entry in the ‘repos’
collection. We then iterate through the ‘commits’, ‘com-
mit_comments’, ‘issues’, ‘issue_comments’, ‘pull_requests’,
and ‘pull_request_comments’ collections updating the counts
for associated Users and Projects whilst simultaneously cre-
ating or updating ProjectMembership entries.

Due to the fact that we only need to iterate through every
collection in the GHTorrent dataset once, we use the Mon-
goDB Java driver directly for reading the dataset, but use
the Pongo-generated classes for inserting data into the anal-
ysis database. The code used for this transformation can be
found at: https://github.com/ossmeter/msri4-challenge.
As our focus is on user activity, the other parts of the GHTor-
rent dataset are ignored.

// Connect to database
Biodiversity bio new Biodiversity ();

// Create a new user and add to database
User user new User () ;

user.setLogin (7octocat”);
bio.getUsers () .add(user);

bio.sync();

// Query the database
user bio.getUsers () .findOne (
User .LOGIN.eq(”octocat”));

Listing 1: An example using the Pongo-generated
code to create a new user and then query the
database.

2.2 Analysing Biodiversity of Projects

Although the GHTorrent dataset has now been summarised
for biodiversity analysis, it still contains some entries that
we need to exclude. After the dataset is cleaned, we per-
form cluster analysis on the data to try to discover natural
clusters of user behaviour.

2.2.1 Cleaning the Data

As mentioned, the GHTorrent dataset consisted of 90 pop-
ular projects and their forks. There are a total of 108,620
forks, many of which have no activity — i.e. all of the count
fields in the database are zero. As such, the vast majority
of the 496,519 users also exhibited zero activity. It appears
that a common trend on GitHub is to fork a project but
make no changes. To inhibit these users from distorting our
analysis, we exclude them from the dataset. As our goal is
to answer research questions related to the structure of com-
munities on GitHub, we also exclude projects that consist
of less than five members (as is also done in [5]).

Table 1 shows a summary of the number of projects, users,
and project memberships in the cleaned dataset in compari-
son to the original. The dramatic decrease in the number of
projects is largely due to the removal of many of the inac-
tive forks. Table 1 also shows an insight into the size of the
communities around the projects in the GHTorrent dataset,
with 21 projects having over 1,000 members.

Table 1: A summary of the dataset. #U is the number of users of a project.

Dataset Projects Users Project Memberships
GHTorrent 108,710 496,519 NA
Biodiversity 108,710 496,519 189,225

Cleaned 20,510 54,659 97,894

Cleaned (#U>5) 161 40,013 73,270
Cleaned (#U>10) 99 39,806 72,890
Cleaned (#U>100) 72 39,341 71,712

Cleaned (#U>1000) 21 23,774 50,087

2.2.2 Clustering the Data

In order to determine whether there is structure in GitHub
communities, and if so, how this structure looks, we need to
classify users into roles based on their behaviour. To do this
we analyse the project memberships collection to look for
commonalities. The project membership collection is the
most suitable as it breaks down user behaviour on a per-
project basis. A single user may be a member of multiple
projects, but may play different roles in each. This means
that we cannot analyse the users collection, as this is a cu-
mulative total of each users’ behaviour.

Absolute counts of user activity (i.e. number of commits
on a project, etc.) is misleading in the context of commu-
nities: it provides an unfair comparison between users. For
example, a user who has committed 10 times on a project
with only 15 commits should be seen as having contributed
more than a different user who has committed 10 times on a
project with 15,000 commits. As such, during the cleaning of
the biodiversity dataset, we convert the absolute counts into
proportional values with respect to each project’s overall ac-
tivity. Our first user above will therefore have contributed
66% of the project commits, whereas the second user will
only have contributed 0.0007% of their project’s commits.

To group similar users together, we apply cluster analysis
to the dataset. Cluster analysis [6] splits data into groups
that are similar in some sense. It is commonly used to define
taxonomies in large datasets. In particular, we apply the
k-means clustering algorithm to the proportionally-logged
project membership dataset. K-means divides a dataset into
a user-defined (k) number of clusters. In brief, k-means ini-
tially selects k random data points (non-random initial se-
lection techniques exist, see [6]) called centroids and forms
clusters of data points around them based on their Euclidean
distance to the rest of the data points. Points are assigned
into a cluster with the centroid nearest to them. The cen-
troids are then recalculated by computing the centre of each
cluster. This process of assigning clusters and recomputing
centroids repeats until the algorithm converges on a fixed
set of centroids.

3. RESULTS

In this section we report the results of our analysis aimed
at answering the three research questions formulated in Sec-
tion 1.

To find a satisfactory clustering result, a number of it-
erations were needed, where we executed the algorithm for
different numbers of clusters (k). The validity of the clus-
tering result was then assessed through visualisation. The
resulting number of clusters was three.

358

0713642 022604 0028640 008573 0.07382 0420011

oo?msaam‘ng """"""" 666‘(15 """"""""" “

commit_comments pull_requests pull_requests_commer

commits issues issue_comments

Figure 2: Visualisation of the clusters found by k-
means for users working on projects with more than
10 members.

The centroid plot illustrated in Figure 2 shows the ex-
emplar profile for each of the 3 clusters resulting from the
k-means clustering applied to the dataset of projects con-
sisting of more than 10 members. The average member in
cluster 1 is quite active in commiting but not in the rest of
the categories. She is responsible for 71% of the commits,
23% of the commit comments, 2% of the issue reports, 8%
of the issue comments, and 7% of the pull requests. Such
behavior can be demonstrated by core developers, who focus
mainly on development activities and do not communicate
often with the rest of the community. On the other hand,
the average member of cluster 3 is active in issue reporting
and discussing, as well as in commenting on pull requests,
but she is less active on development related activities. Such
behavior can be demonstrated by active users. Finally, the
average member of cluster 2 is not active in any of the cate-
gories. Such behavior can be demonstrated by passive users
who just follow the project but are not participating. Ta-
ble 2 lists the size of the three aforementioned clusters. The
biggest proportion corresponds to cluster 2 which is the clus-
ter of the passive users (99.8%). The other two clusters,
namely cluster 1 and 3, correspond to 0.1% each.

To investigate how project size affects the results, we ap-
plied clustering to larger groups as well. Figure 3 illus-
trates the centroid plot resulting from the k-means analysis
of projects with more than 1000 members. The member be-
haviours derived for large projects are similar to the member
behaviours derived from the analysis of projects with more
than 10 members but less than 1000. Namely, the average
member belonging to cluster 2 is very active in every aspect
of the project. Her source code commits correspond to 77%
of all the commits, her issue reports correspond to 14% of

Table 2: The sizes of each of the clusters for users
working on projects with more than 10 team mem-
bers.

Group ID Cluster Size Proportion
1 65/72806 0.001
2 72668,/72806 0.998
3 73/72806 0.001

Table 3: The sizes of each of the clusters for users
working on projects with more than one thousand
team members.

Group ID Cluster Size Proportion
1 40/50067 0.0008
2 11/50067 0.0002
3 50016/50067 0.999

the total issue reports and her pull requests correspond to
20% of the total pull requests. On the other hand, the aver-
age user of cluster 1 does not commit source code a lot but
she is very active in reporting issues, in discussing about this
issues and in creating pull requests. Finally, the average user
of the last cluster, namely cluster 3, is very inactive in every
activity and therefore can be considered as an observer or
passive user of the OSS project.

In addition to the clusters derived for larger projects be-
ing similar to the ones derived for small ones, their size as
a percentage of the entire populations is quite similar. This
size is shown in Table 3. For popular projects only 0.02% of
the entire population are core developers, while 0.08% are
active users. Finally the vast majority of project members
(99%) are just passive users or observers. Based on this ob-
servation we can say that the percentage of core developers
and active users does not change as the project grows.

The analysis of the other dataset partitions listed in Table
1 gives similar results. The centroid plots for this analysis
can be found on GitHub?.

4. DISCUSSION AND CONCLUSION

0770050 033649

—

oopa coni7 0000062 00013 o0t

commits

0000055

commit_comments issues issue_comments

Figure 3: Visualisation of the clusters found by k-
means for users working on projects with more than
one thousand members.

“https://github.com/ossmeter /msr14-challenge

pull_requests pull_requests_commer

359

We have performed a cluster analysis on the GHTorrent
dataset in order to understand how GitHub communities
are structured. We address the research questions set out in
section 1:

RQ1: According to our clustering analysis we found that
GitHub communities have a structure that consists of three
main types of users, namely core developers, active users,
and passive users. In these three categories we can add a
fourth one, which consists of all the users who fork a project
on GitHub and then have no activity on the fork. This
activity was excluded from the cluster analysis, in order to
avoid distorting the results.

RQ2 The three-layer structure revealed by our cluster
analysis is in accordance with the onion-shaped structure
proposed by [1]. Moreover, our results are consistent with
the results of [2], who find that core developers correspond
to a small percentage of all the members of SourceForge OSS
projects.

RQ3 The structure of OSS communities is not affected by
project size. Moreover, the consistency of such communities
does not change the larger a project gets. More particularly,
as projects get larger the percentage of core developers work-
ing on the project remains stable. This could potentially
have implications on the sustainability and longevity of the
project. However, the large passive user base may allow for
new core members to arise should existing core members
leave. Further work is required to determine whether this
occurs in practice.

5. ACKNOWLEDGEMENTS

This research was supported by the EU through the Auto-
mated Measurement and Analysis of Open Source Software
(OSSMETER) FP7 STREP project (318736).

6. REFERENCES

[1] K. Crowston and J. Howison. Assessing the health of
open source communities. Computer, 39(5):89-91, 2006.
S. Daniel, R. Agarwal, and K. J. Stewart. The effects of
diversity in global, distributed collectives: A study of
open source project success. Information Systems
Research, 24(2):312-333, 2013.

G. Gousios. The ghtorrent dataset and tool suite. In
Proceedings of the 10th Working Conference on Mining
Software Repositories, MSR’13, pages 233236, 2013.
T. Larsson. Biodiversity evaluation tools for european
forests. Criteria and Indicators for Sustainable Forest
Management at the Forest Management Unit Level,
page 75, 2001.

M. Loreau, S. Naeem, P. Inchausti, J. Bengtsson,

J. Grime, A. Hector, D. Hooper, M. Huston,

D. Raffaelli, B. Schmid, et al. Biodiversity and
ecosystem functioning: current knowledge and future
challenges. science, 294(5543):804-808, 2001.

P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining, (First Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2005.

2]

3]

